"Dante's Inferno" in Chile: All-Time National Heat Record Smashed by 6°F

28/01/17
Author: 
Jeff Masters

Fires (red squares) in Chile spread smoke over the Pacific Ocean, as seen at 10:35 am EST Thursday January 26, 2017. This MODIS image is from NASA’s Terra satellite.

 

 

Jan 27, 2017 - The first all-time national heat record of 2017 was set in spectacular fashion on Thursday in Chile, where at least twelve different stations recorded a temperature in excess of the nation’s previous all-time heat record—a 41.6°C (106.9°F) reading at Los Angeles on February 9, 1944.

According to international weather records researcher Maximiliano Herrera, the hottest station on Thursday was Cauquenes, which hit 45.0°C (113°F). The margin by which the old record national heat record was smashed: 3.6°C (6.1°F), was extraordinary, and was the second largest such difference Herrera has cataloged (the largest: a 3.8°C margin in New Zealand in 1973, from 38.6°C to 42.4°C.) Herrera cautioned, though, that the extraordinary high temperatures on Thursday in Chile could have been due, in part, to the effects of the severe wildfires burning near the hottest areas, and the new record will need to be verified by the weather service of Chile.

Here are some of the high temperatures from January 26 in Chile:

Maule Region (near the area affected by wildfires):

Cauquenes, 45.0°C
Coronel de Maule, 41.8°C
Los Despachos, 42.8°C
Santa Sofia, 43.1°C
Sauzal, 41.8°C

Maule Region (outside the area affected by wildfires):

Linares, 41.8°C
Longavi Sur, 42.3°C
Parral, 40.8°C

Bio Bio Region (near the area affected by wildfires):

Bulnes, 42.5°C
Quillon, 44.9°C
Ninhue, 43.0°C

Bio Bio Region (outside the area affected by wildfires):

Portezuelo, 41.2°C
Chillan, 41.4°C (DMC station)
Chillán Quinchamalí, 43.0°C
San Nicolas, 41.1°C
Los Angeles Maria Dolores Airport, 42.2°C 


Figure 2. Smoke settles over Santiago, Chile on January 20, 2017. Chile has endured weeks of extreme heat that has smashed numerous heat records, with Pudahuel Airport in western Santiago on January 20 hitting the hottest temperature ever recorded in the Santiago metropolitan area: 37.7°C (99.9°F). Santiago Observatory (with records back to 1866) set its all-time heat record on January 25, 2017 with 37.4°C, and Quinta Normal Observatory broke its all-time heat record in December 2016, with a reading of 37.3°C, beating a record that had stood 101 years. Image credit: Martin Bernetti/AFP/Getty Images.

Record heat and extreme drought lead to deadly Chile wildfires
Record heat and extreme drought in Chile are contributing to their worst wildfires in decades. On Thursday, the entire town of Santa Olga was destroyed by fire, with more than 1,000 building consumed including schools, nurseries, shops and a post office. As reported in The Guardian, Carlos Valenzuela, the mayor of the region, said: “Nobody can imagine what happened in Santa Olga. What we have experienced here is literally like Dante’s Inferno.” Authorities declared a state of emergency in Chile due to wildfires on January 20, and as of January 26, more than 100 fires were burning throughout O’Higgins and Maule regions. At least ten people have been killed by the fires, including four firefighters and two policemen. According to insurance broker Aon Benfield, the fires had consumed 578,000 acres of land as of January 26, and damages to the timber industry alone were estimated at $40 million. Hot, dry weather with high temperatures in the 90s are expected to continue for the next week in the Santiago area.

Chile's ongoing megadrought partially attributed to human-caused climate change
Central Chile is enduring a decades-long megadrought that began in the late 1970s, with precipitation declines of about 7% per decade. According to a 2016 study by Boisier et al."Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile", this drought is unprecedented in historical records. While at least half of the change in precipitation can be blamed on natural causes, primarily due to atmospheric circulation changes from the Pacific Decadal Oscillation, the authors estimated that a quarter of the rainfall deficit affecting this region since 2010 was due to human-caused climate change.